What is repository?

NSMDF is based on JMI specification. So it implements most of functionality specfied there. Both JMI and NSMDF are under developing at time of writing this document. Reposiory could be be considered as some sort of in-memory database. You could create object in it, you could remove objects in it and you could build links between objects in it. Examples in this document use UML 1.4 metamodel.

Every object in the repository has interface class. Name of this interface class is produced from name in mof metamodel by adding suffix and prefix that are supplied in configuration file. For UML 1.4 in NSUML1_4 project prefix is "M" and suffix is "". So for UML 1.4 Class class interface name is MClass

For exact number and functionality of interface classes please look at JMI specification.

Creating repository

In every repository there is an outermost package, that "contains" every other object and metaobjects. In order to start woring with repository you will need to create this object. To create outermost package you need to know class name that implement both JMI package interface and outemost package interface. Then you need get class by name, then to just to create instance of the repository. Name of class for repository could be constant in application or to be kept in the property. Code below demonstrate those steps for UML 1.4 (as in NSUML1_4 project).

String REPOSITORY_IMPLEMENTATION_CLASS= "ru.novosoft.uml.impl.UMLUMLPackageImpl";

UMLPackage createUMLPackage()

{

 try

 {

 Class c=Class.forName(REPOSITORY_IMPLEMENTATION_CLASS);

 return (UMLPackage)c.newInstance();

 }

 catch (Exception ex)

 {

 ex.printStackTrace();

 return null;

 }

}

Creating object in the repository

To you will need to use JMI interface for it. For example to create instance of UML "Class" you will need to do following.

MClass createClass(String name)

{

 MClass rc = (MClass)umlPackage.getCore().getMClass().create();

 rc.setName(name);

 return rc;

}

Root objects

Newly created objects became root objects in repository. The root object is an object that is not owned by compositonal association or attribute. When object became owned, it is removed from set of root objects in the repository. All root objects could be got by ((MDFOutermostPakckage)umlPackage).getRoots() method. JMI specification does not specify similar method, so you have to use Novosoft extenstion for it.

MAttribute attr = ...;

MMultiplicity m = (MMultiplicity)umlPackage.getDataTypes().getMMultiplicity.create();

// m is now root object

attr.setMultiplicity(m);

// m is no more root object

Removing object from repository

Objects in repository do not became garbage collected when they are no more referenced from other repository objects. They became root objects. To remove object from repository you will need call refDelete() method on it. This method remove this object, all objects owend by it and remove all references to this object from all other objects.

Accessing association ends w/o references.

Not all association ends in metamodel have references and therefore they are no accessible using public interfaces for model elements. But they are accessible and modifiable using assoication object.

MOperation op = ...;

MException ex = ...;

MAContextRaisedSignal a = (MAContextRaisedSignal)umlPackage.getCommonBehavior().getAContextRaisedSignal();

a.getRaisedSignal(op).add(ex);

