Zebra technology: using UML in a system for automated development of large-scale software systems.

11.
Introduction

22.
Object-Oriented Analysis and Design

32.1.
Basic terms

43.
UML

53.1.
Architecture and UML metamodels

53.2.
Basic terms

63.3.
UML Diagrams

94.
RUP

125.
Zebra

135.1.
Zebra architecture

145.2.
Zebra application

155.3.
Zebra language

155.4.
Example of creating an application with Zebra

176.
Conclusions

1. Introduction

This article is dealing with development of techniques for building large-scale software systems based on the object-orientation. The technology under discussion aims at using software based on UML and RUP in the development process. Its main objectives were to reduce software development costs and to improve the quality of the resulting products (middle- and large-scale software systems). The underlying ideas of this technology were to obtain operational code at all project phases (ideally, starting from the moment when the customer submits the system requirements) and to automate certain (ideally - all) stages of system development, particularly the coding stage.

Object-orientation is not a new concept. The first terms of object-oriented analysis and design (OOAD) appeared and evolved in the late sixties in the Simula67 language. Till present OOAD progressed in parallel with the general evolution of computers and computing technologies. OOAD provides better management of technological complications, which in turn allows to use incessantly raising levels of abstraction for system development – switching from objects to classes, then to class libraries and finally to sets of tools for rapid application development (RAD). OOAD increases the degree of code reuse, the resulting programs are more easily adapted to the changing conditions. Another advantage of OOAD is a more consistent model of software development process.

Another side of OOAD evolution is the development of techniques for modeling software (and not only software) systems. The predecessors of object-oriented programming languages came into view in the middle of the seventies and continued to appear in the eighties, as long as the programmers and methodologists tested different approaches to OO analysis and design. In June 1996 the UML (Unified Modeling Language) specification v.0.9 was published, being a result of many years' efforts and the summary of prior expertise. UML proved to be of big interest and captured the attention of numerous organizations. The latter joined the consortium of UML partners established by Rational Software; the list of participants included HP, Microsoft, Oracle, Unisys and IBM. The result of interaction between these companies was the 1.0 version of UML - a strictly determined, expressive, powerful and widely applicable modeling language. Currently UML is widely used to model various systems in different fields (spanning from programming to business analysis).

When a large software (and not necessarily a software) system is created, not only the common language used to describe the system and its components is of importance, but also the proper efforts management and the interaction between the performers. Usually the arrangement of efforts is described in terms of processes - in our particular case, business processes. To avoid elaborating these processes each time from the scratch, the Rational Software corporation and its ideologists Grady Booch, Ivar Jacobson and James Rumbaugh created the RUP (Rational Unified Process) - a set of practically tested principles, methods and processes providing quality and efficient of efforts in software development projects. RUP uses UML terms to describe the standard set of roles, business processes, artifacts and other items required for software development.

This article describes the technology elaborated at Novosoft Inc. within the frame of the Zebra project. The target of the technology under consideration are the processes of developing large software products based on RUP, UML and Java. The main objectives of building this technology were to reduce overall development and support costs for middle- and large-scale software systems and to increase the competitive power of the resulting products due to greater flexibility and customization abilities.

One of ways to achieve this goal is the automation (either complete or partial) of certain stages of application development (at least for some application components). Currently the Zebra technology offers a tool for semi-automatic creation (generation) of Java code using the UML specification of the system to be developed.

2. Object-Oriented Analysis and Design

Object-Oriented Analysis and Design (OOAD) is not a new concept. The first terms of OOAD appeared and evolved in late nineteen-sixties in the Simula67 language (developed by Kristen Nygaard and Ole-Johan Dahl at the Norway Computing Center). It is in Simula67 where the concepts of class, subclass and class procedure appeared for the very first time. In the middle of the seventies the Smalltalk language was created at Xerox research center in Palo Alto. It was the first complete and transparent OO language. All elements of the Smalltalk language were implemented as objects, the programming environment and culture were in accordance with the OO programming philosophy. Even at present Smalltalk is considered the most "pure" OO language.

Simula and Smalltalk gave birth to a new programming style, when data and procedures for processing these data are stored together, which significantly differs from the traditional procedural programming (as implemented in languages like C, Pascal, Fortran). Simula and Smalltalk were widely acknowledged by the academic audience, but rather not demanded by the majority of programmers, and OOP was not widely utilized for producing marketable systems. In the beginning of eighties, Bjarne Stroustrup (who worked at AT&T Bell Laboratories), created the C++ language - an object-oriented extension of the C language. It is after the commercial release of C++ that the object-oriented programming became widely recognized. At the end of the eighties OOP became a de-facto standard in the IT industry. Despite the advantages of the procedural programming for specific projects, we can generally state that OOP is currently the best technology for developing interactive user-oriented software systems - as well as for large- and middle-scale systems.

In the nineties and the beginning of 2000's the application developers need to satisfy the ever-growing complexity of requirements, to use ultimately complicate data structures and architectures, and to offer the services to greater amount of end-users. These reasons cause the developers to build more complex and large-scale systems. OOP provides better management of these technological difficulties. It allows to develop systems using constantly raising levels of abstraction – from objects to classes, then to class libraries, and finally to application development tools. OOP extends the degree of code reuse, the resulting programs are easily adapted to the changing conditions. Another advantage of OOP is a more consistent model of the software development process.

2.1. Basic terms

The main idea of OOP is the encapsulation of data along with the methods for processing these data within entities called objects. When we use this approach, the methods describe the behavior of these objects. The data are presented by the object's attributes - the object attributes are said to describe the object state.

Objects with identical behavior and with states described by the same set of attributes are grouped into classes. A class in this terms is the description of a group of objects.

The main features of object-orientation are encapsulation, messaging, inheritance and polymorphism.

· Encapsulation is the technique that hides the implementation details from the user by clearly separating the object's internal structure from its external presentation. This makes the final program insensitive to minor implementation changes. Encapsulation also implies combining the description of data structure with the description of behavior of objects and classes, thus making the system more transparent.

E.g., in an OO system we can describe the Currency class which represents the amount of currency. The methods allowing to increase (add(Currency)), and to decrease (subtract(Currency))the amount of currency are defined for this class. If your system is properly designed, then the change of currency or accounting rules in your country (e.g. when you start using dollars and cents instead of only dollars in your reports) will affect only the implementation of the Currency class (for this particular example, the internal presentation of Currency by an integer should be replaced by a floating-point one).

· Messaging is the only method of interaction between objects in OOP. Calling a function which is a part of an object (i.e., an object method in OOP terms) is actually sending a message to an object.

In the example above calling the add method for an object of the Currency class can be considered as sending the add message with a parameter (which is another object of the Currency class) to the object of the Currency class. This finally results in adding the value presented by the second object to the value presented by the first object (i.e., the value of the first object will be augmented).

· Inheritance allows to develop hierarchical systems of classes starting from the most generalized definitions and ending with the most detailed definitions. In other words, this provides the ability to re-use existing definitions when you create new ones. New classes can be regarded as subsets of objects determined by existing classes. Moreover, it also allows to separate data and functionality between the linked objects, thus avoiding repetitive implementation of identical functions.

E.g., a Person class (describing an employee of the company) can be defined in your system. This class can have the attributes (birth_date, acceptance_date, salary) and methods (employ, dismiss, calculate_salary) which are common for all employees. Besides, there is always a Director which is, from one hand, a regular employee, but, from the other hand, (s)he also has some specific features-attributes (subordinates_list) and functions-methods (hire_new_employee). You could try to duplicate all the attributes and methods of the Person class in the Director class, but it is much easier (and more correct) to declare the Director class as the child of the Person class and to describe only its class-specific attributes and methods.

· Polymorphism allows to create structures that can be used with different, but similar types. Using this feature a designer can create common methods able to work with super-classes and at the same time usable for subclasses, thus making the code more flexible and extensible. The system will apply the proper method automatically, using the information about the method's operand type.

Thus, in the previous example calculation of salary for a regular employee and for the Director can be implemented by different procedures (e.g. the employee's salary is fixed while the Director's salary depends upon the company profit). In this case, the calculate_salary method will be redefined in the Director class, and the process of calculation will be just calling this method for all objects of the Person class - including the object of a Director class.

3. UML

Another aspect of OOP evolution was the development of techniques for modeling of software and other systems. The predecessors of OO modeling languages started to emerge in the middle of the seventies, and continued to appear in the eighties - as the programmers and the methodologists tested different approaches to object-oriented analysis and design. From 1989 till 1994 the amount of existing modeling languages increased from less then a dozen to over 50. Such a plenty of alternatives meant only that the majority of OO technique users were unable to select a language that would perfectly meet their requirements. In the middle of nineties, new OO modeling techniques combining the abilities and features of many of their predecessors were created: Booch’93 (named after its creator, Grady Booch), OMT-2 (Object Modeling Technique, created by Object Management Group) and OOSE (Object-Oriented Software Engineering, developed by “Objectory” in Sweden). Each of these solutions offered specific advantages: OOSE aimed at “use-cases ” and was suitable for developing and modeling business processes, OMT-2 allowed to easily analyze and develop systems with complicated and intensive data flows, Booch'93 suited perfectly for the design and implementation phases of software development.

In October 1994 Grady Booch and Jim Rumbaugh at Rational Software Corporation started merging Booch and OMT. In October 1995 they presented a preliminary version of the “Unified Method” technique.

At the same time, significant efforts were applied to elaborate an industry standard for the modeling languages market. In the beginning of 1995 Ivar Jacobson (at that time - CTO of Objectory) and Richard Soley (CTO of Object Management Group) coordinated common activities in the field of standardization at the OO techniques market. The first wide-scale agreement on elaborating the methodological standard was achieved in June 1995 at the meeting of chief methodologists held by OMG.

OOSE became a part of Unified Method when the developer company (“Objectory”) was acquired by Rational Software. Ivar Jacobson, the former owner of “Objectory”, joined Booch and Rumbaugh in their unification efforts (later, this trio was nicknamed “Amigos”). The main reasons for creating the unified modeling language - UML - were the following:

· Obviously, the three existing techniques were independently evolving towards each other, so it would make sense to eliminate insignificant and disincentive differences;

· The unification of the three techniques would stabilize the OO methodologies market, thus allowing the developers to concentrate on finalizing the elements of an existing language -rather than dissipating efforts on creating new languages;

· The unified technique was supposed to circumvent the disadvantages of its predecessors and to bring together their benefits.

The main goals were also stated. The future language should allow:

1. To model systems (not only software ones) using object-oriented concepts;

2. To establish explicit relationships between both conceptual and executable artifacts (development process objects);

3. To handle scaling problems, which are natural for complex systems;

4. To be used by both humans and machines.

In June 1996 Booch, Rumbaugh and Jacobson published the UML specification v.0.9 and encouraged the community of programmers and methodologists to participate in discussing the language.

UML was of big interest and captured the attention of numerous organizations, which finally joined the UML partners consortium established by Rational Software. The list of participants included HP, Microsoft, Oracle, Unisys and IBM. The result of interaction between these companies was the 1.0 version of UML - a strictly determined, expressive, powerful and widely applicable modeling language.

The standard was presented by OMG in January 1997. At the same time the additions presented by IBM, ObjecTime, Platinum Technology, Ptech, Taskon, Reich Technologies and Softeam were incorporated in the standard. This resulted in releasing the 1.1 version of UML (with more clearly stated semantics). These additions provided more exact descriptions of different language aspects - such as business modeling, constraints description language, state machine semantics, types, interfaces, components, interaction diagrams and metamodels. The UML 1.1 standard was accepted on November 17th, 1997. The current UML version is UML 1.4. Besides, OMG developed the XML (eXtensible Markup Language) standard for UML model presentation, XMI (XML Metadata Interchange).

3.1. Architecture and UML metamodels

A noticeable fact is that a UML structure can be described itself using UML. The primary element of the UML architecture is the concept of metamodel (a model of a higher level). Thus, we can consider some specific system of objects as a zero-level model of itself. A model describing classes, associations and behavior of these objects is a first-level model (or simply model). Usually, its structure is more simple than the structure of the original system. The model describing classes of elements of different first-level models (classes, associations, attributes, operations, states etc.) is a second-level model or metamodel. Moreover, the UML architecture defines the existence of a metametamodel or the third-level model describing the structure of different metamodels. Its structure is very simple, and cannot be simplified (i.e., if we would try to reduce it to a fourth-level model, a metametametamodel, the latter will have the same structure as the original third-level model or the metametamodel). The model of all levels are described by UML terms in the language specification.

3.2. Basic terms

The UML (Unified Modeling Language) is a graphical language used for visualization, specification, designing and documenting systems. UML is most widely applied for modeling business processes and software systems for automation of these processes. Using UML, one can develop a detailed plan of the system to be created, which will reflect both the conceptual elements and the implementation particularities. UML recently became the industrial standard in the area of software systems design and enterprise business modeling.

Classes and relationships between classes are the typical objects of a static UML model. Classes are the primary building blocks of any object-oriented system. They represent the description of a collection of objects with common attributes, operations, relationships and semantics. A class implements one or several interfaces.

Classes are used to compile the dictionary of the system under development. It can include either abstractions (which are parts of the respective subject area) or classes providing the base for implementation. The software, hardware and conceptual entities are described by classes. Well-structured classes are distinguished by distinct boundaries, they are helpful in setting a properly balanced distribution of responsibilities within the system.

The entities modeled by classes can have no counterparts on the software side. For instance, for a trade company the employees that send delivery notes or the salespersons are as well the parts of the business process to be automated, and so on.

Classes are rarely independent. Usually they interact in some way one with another. Thus, when you model the system, you need not only to identify the entities, but also to describe the relationships between these entities. There are three basic type of relationships:

· Dependencies describing the inter-class utilization relationships;

· Generalizations linking the generalized classes with specialized ones;

· Associations which represent the structural relationships between objects (an aggregation is a particular case of a generalization);

Each of these types allows to combine abstractions in different ways.

An important feature of UML is its scalability. UML was designed as a modeling language applicable in the most different areas. Since it was impossible to cover all possible areas of UML applicability at the design stage, the features providing scalability were incorporated in the language. The primary one is the use of stereotypes. A stereotype is a label adding a specific sense to a UML element. Thus, e.g., the UML class labeled with a “boundary” stereotype designates an interface class (i.e. a class of objects providing the system interface with the outer world). For each specific application of UML an appropriate set of stereotypes can be defined.

3.3. UML Diagrams

The most important part of a static (structural) UML model are the class diagrams. The static model also includes object diagrams, component diagrams and deployment diagrams. The dynamic (behavioral) model includes state diagrams, activity diagrams, use-case diagrams (diagrams describing different scenarios or precedents of system use), sequence diagrams and cooperation diagrams.

Usually the modeling of a system or process starts from use-case diagrams. These diagrams are used to separate external (in respect to the system or process) entities and the functionality provided to these entities by the system.

[image: image1.wmf]User

Administrator

Send mail

Receive mail

Add user

Fig. 1. Use-case diagram.

Thus, the diagram above displays that the system has two kinds of users: User (regular user) and Administrator. The system provides the User with the ability to send and receive mail, and the Administrator (inherited from User) with an extra function of adding a regular user.

Use-case diagrams represent the appearance of the system, describing its upper-level interface. The internal mechanics of the system are usually depicted by other types of diagrams. The ones most frequently used are object diagrams and class diagrams.

[image: image2.wmf]Person

+date_of_birth: Date

+salary: Currency

Director

+employ_new_person(): Person

+employee_list

*

+boss

1

[image: image3.wmf]person1 : Person

person2 : Person

director : Director

Fig. 2. Class diagram, object diagram.

In the example above, the class diagram contains two classes, Person and Director, linked by the inheritance relationship (arrow) and by the association (line). The object diagram on the right describes a particular case of link between individual objects. The difference between class and object diagrams is obvious - the first ones describe all possible links between the classes and completely determine the set of states of the system of objects; the second ones represent the system of objects at some particular time moment, providing a picture of a particular case of system configuration.

Class and object diagrams describe the static structure of a system (possible links and associations between objects and classes), while sequence and collaboration diagrams represent the dynamics of interaction between objects. These diagrams are used to represent possible scenarios of interaction between objects, sequences of message exchange, control and data flows.

[image: image4.wmf]user : User

system core : Core

1: send message()

mail server : Server

1.1: send message()

1.1.1: result

1.2: result

[image: image5.wmf]user : User

system core : Core

mail server : Server

1: send message()

2: send message()

3: result

4: result

Fig. 3. Sequence diagram, interaction diagram.

Both diagrams on Fig.3 represent the same process - a user sends a message. As you can see, the user sends a “send message” message to the “system core” object which (in course of handling this message) sends a “send message” to the “mail server” object. “Mail server” returns the object "result" which is then passed to the user. Sequence and collaboration diagrams provide a different presentation of the same things, the diagrams of one type can be automatically converted to the other one. These diagrams are similar to object diagrams since both represent a particular case of implementing the interaction between system objects.

Other types of diagrams (state and activity diagrams) are used to completely define the dynamics of interaction between the objects.

[image: image6.png]

Fig. 4. State diagram

On the picture above you can see the state diagram for a common phone. State diagrams are used to describe states of objects and systems of objects along with the procedures of transitions between different states. Transitions are displayed as arrows labeled with respective initiating messages.

[image: image7.png]!

search for client

dentiuna |

abtain an order)

establish a project team

estimate efforts) __ createthe technical proposal

 send documentto the customer }

Fig. 5. Diagram of activities

The activity diagram above displays the process of initiating a project in some company. The diagrams of this type represent activities (the difference with states is that one cannot remain within an activity after finishing the described actions) and the sequence of transitions between the activities. Parallel activities (control flow forks) are represented by the so-called fork-join states (displayed as solid vertical or horizontal bars).

Logical components of a software system are represented by component diagrams. Components can correspond to both static (packages, libraries, executable modules) and dynamic (flows, processes, programs) system elements, as well as to physical elements/units (server, computer, mobile phone etc.). Components inherit all common properties of regular UML classes, i.e. they can have attributes, operations, interfaces and can be linked by associations.

[image: image8.wmf]Terminal

Core

Mail Server

ScreenKeyboard

Fig. 6. Components diagram.

The diagram above represents the components of a mail system (the functions of this system were described by the use-case diagram in Fig. 1).

[image: image9.wmf]User : PC

User : Terminal

Application : Server

Core : Core

Mail : Server

Mail server : Mail Server

Fig. 7. Deployment diagram.

Deployment diagrams represent possible system configurations - specifically, the possible distribution of components between physical units (nodes) of the system.

4. RUP

RUP (Rational Unified Process) is a software development process. Rational Software corporation and its ideologists, the pillars of object-oriented analysis and design - Grady Booch, Ivar Jacobson and James Rumbaugh - created RUP as a set of practically tested principles, methods and processes providing quality and efficiency for software development projects. Physically, RUP is a knowledge base containing the descriptions of roles of all participants of the development process, as well as their activities, responsibilities, templates of documents used by process participants to communicate, model standards, and plenty of other vital information.

The main features of RUP are:

1) Unambiguous separation of developers' roles in the process. The following groups of developers are usually differentiated: analysts, developers, testers and managers. Separate roles are specified within each of these categories.

2) The following main groups of activities are determined: business modeling, requirements management, analysis and design (or simply design), implementation, testing, deployment, support, project management, change management and environment management.

3) The main development phases: inception, elaboration, construction and transition.

4) The iterative nature of the process: each phase can be split into several iterations, allowing more flexible process management;

5) Assigning performers for each activity;

6) Defining the mutual dependence of activities;

7) UML (Unified Modeling Language) as the common language for analysis and design;

8) Common modeling standards are defined in UML (within the RUP frame).

According to RUP, the software development process is composed of several basic processes which run in parallel and are constantly active. Moreover, it can be split into phases, which in turn can be split into iterations.

The diagram below sketches the time picture of process activities (according to phases):

[image: image10.png]Workflows

Business Modeling

Requirements

Analysis & Design

Implementation
Test

Deployment

Configuration
& Change Mgmt

Project Management
Environment

Inception|

Fhall el et

Iterations

Fig. 8. RUP phases and activities.

The development of a software product starts with the inception phase. At this stage the primary analysis of the customer's request is made and the draft of system architecture is elaborated. The most important activities at this stage are business modeling, requirements definition (requirements management), analysis and design, environment configuring.

Business modeling – building the model of business which the intended software system should automate. The business model consists of two parts: business use-cases model and business objects model. The first part describes the main scenarios or business processes and the activities performed within the given business. The second describes the structure and mutual relationships of objects and subjects participating in the business, the subject area and how the actions described in the business use-case model are actually performed. Both models are described in UML using object, use-case, state and activity diagrams. The business analysis also clarifies which scenarios and business objects will be automated as the result of implementing the software system.

The illustrations below provide examples of business object and business use-case diagrams:

[image: image11.png]aaaaa

»»»»»»»»»»»»»»»»»»»

[image: image12.png]

[image: image13.png]®

Blssenas Cheskcin Agent
Stk

The passenger shous

the ket depes tbaggane)

The passanger deposit
the baggage

gt prefrences()

The passenger s asked
for preferanoes

gie boarding card)
| e e |

The passenger receives
2bosiding sard

Fig. 9. Business objects

[image: image14.png]S—

Loroner Indiigad Ched-in

Fig. 10. Business use-case

Requirements definition (or requirements management at later stages) – the activity aiming at developing an accurate specification of system requirements and at modifying this specification in respect to the changing conditions. At the inception stage the system functions are specified (the system functional requirements or the system use-cases) along with the set of requirements which are not system functions, but are essential to provide the customer's ability to use the system (non-functional requirements). The result of this stage is the document specifying the requirements to which the resulting system should conform – the software requirements specification, or SRS. The UML use-cases model (described by use-case diagrams) is a part of this document.

The next figure provides an example of a use-case diagram:

[image: image15.png]{per day} {per month and customer}

% 400,000 2

Customer Conduct Transactions

Fig. 11. System use-case diagram

Analysis and design is the activity aiming at developing the system architecture which would meet all the requirements and at modifying this architecture according to the changing requirements. The architectural model of the system is also based on UML and describes the details of the system internal organization which are essential for meeting all the requirements. The design stage details the architectural model, the internal structure and implementation particularities of all modules specified in the architectural model. If the design model is sufficiently accurate, it becomes possible to implement the system.

Environment configuration – the goal of this activity is to determine the components required for the development – both hardware (computers and other equipment) and software ones (developing environments, compilers, libraries, tools etc.).

The following two phases – elaboration and construction have much in similar. The goal of both is to create an operational product. Both can be split into several iterations resulting in presentation of intermediary results to the customer. But: the primary goal of the first phase is to detail system requirements and to guarantee that the customer's requirements were properly understood. Meanwhile, the second phase aims at developing the systems generally under the condition of fixed requirements. Sometimes both phases merge. The main activities at this stage are analysis and design, implementation and testing. The goal of implementation is to create individual software elements composing the system. The objective of testing is to verify the functionality of the whole system and its components and to check its accordance to the stated requirements, as well as checking for errors.

The last phase is the transition. This stage involves transferring the resulting system to the customer, installing, configuring and supporting it. Support may occur to be either a simple (e.g., assistance at program installation), or a tedious and time-consuming activity (for instance, constant analysis of changes in the client's business and customization of the system according to the changing requirements).

Apart from the already mentioned activities, there are also activities that are not clearly connected to specific phases. These activities keep going throughout the whole project lifecycle - configuration & change management and project management. The first implies the management of changes in the requirements and the related changes in the project architecture, design and environment; the second one deals with solving the arising managerial problems.

5. Zebra

The main goal of developing the Zebra technology was to decrease the overall costs of software development and support. Another objective was to raise the competitive power of the products developed with this technology - thanks to greater flexibility and the ability to customize the product according to specific customer needs. Besides, the use of Zebra implies use of RUP or of a RUP-based development process.

These goals are achieved due to the following features of the product:

· Decrease of amount of manual coding in the project:

The source code in Zebra is replaced with the source model. UML and Java are used to describe the internal structure and logic (Java is used mainly to describe elementary operations within the scenarios and objects described by UML). The advantage of this approach is that an essential amount of manual coding is replaced by correction of the original design model (which should be present in the project in any case). Moreover, this significantly accelerates prototyping of applications.

· Unambiguous separation of application software levels:

Zebra architecture suggests to differentiate at least three application layers:

· User Interface presentation layer, where the developer concentrates on visual presentation of user interface components;

· UI logic layer, where main efforts are focused on implementing UI scenarios (the sequences of screens presented to the user), on interaction between UI components, flows of data and events between these components, data validation and translation of these data into data and events of the subsequent layer.

· Business Logic layer, where scenarios and operations of the system subject area are implemented.

· Essential requirements to the application development cycle:

Among the main stages of the development cycle which were described earlier, several are of special importance when using Zebra:

· Phase of use-case analysis, when the system functional requirements and user roles are defined. These parameters are described by UML use-case diagrams composed of actors, use-cases and system usage scenarios.

· Prototyping. At this stage (usually important for middle- and large-scale projects) functional prototypes and user interface prototypes are built. Zebra reduces the costs of both the current stage and the whole development process, since it allows to build prototypes more quickly, and then to re-use resulting UML models in further work on application development.

· Implementation. If Zebra is used for the project, this stage will be tightly connected with the design stage. The design stage includes development of business scenarios and operations (Business Logic modeling) and of the user interface logic (UI logic modeling). Use of Zebra suggests visual development (using some kind of UML editor), which simplifies the understanding of the overall application logic by all team members, makes the application support easier and reduces the documenting costs (most parts of the model which will later on serve for code generation can be understood without detailed descriptions, which are usually required to make manually developed code more intelligible). Besides, automated code generation assures that all design solutions will be implemented exactly as originally planned.

· Simplified application support

The costs of supporting the application are reduced due to:

· Simplified training of new team members, since the application structure is always explicitly specified in UML (even when the documentation is missing);

· Simplified debugging (less modifications made to the application) thanks to the requirements for modular design and layering imposed by Zebra on the development process.

· Simplified application development under changing conditions (requirements).

5.1. Zebra architecture

Technically speaking, Zebra is composed of development-time components and runtime components. The main runtime component is the Java code generator. It accepts the UML model as input - either in Rational Rose (rose petal files) or in the universal XML metadata interchange (XMI) format, and generates a set of Java classes implementing the behavior described by the model.

Theoretically, the generated classes can be used per se, either completely composing some application or being only a part of it. But to use all the advantages offered by Zebra, it makes sense to use these classes along with Zebra runtime components. These are, generally, the Zebra server, the Zebra presentations, presentation connectors along with some other lower-scale components helping to create applications.

The Zebra architecture is presented on the following figure:

[image: image16.wmf]

Zebra server

FSM1

FSM2

Running BL

statemachines

Running UIL

statemachines

SM1

SM2

Presentation #1

Presentation

interface

Client #1

Client #2

Client #3

Zebra server

interface

Connector specific

internal transport

External

UML Tool

(Rose)

Zebra

generator

.java

files

Java

compiler

Java

classes

Presentation #2

Direct

references

Presentation

specific

transport

Zebra

application #1

Zebra

application #2

Presentation

connector

Fig. 12. Zebra architecture.

As you can see, the classes of Zebra applications are generated as Java classes using the UML model as the source. Then they are compiled by any Java compiler and executed in a certain environment (which is built in course of interaction between the Zebra server and one or several Zebra presentations).

· Zebra server provides the standard implementation of numerous entities which are common for many applications, such as sessions, scenarios of work with users, presentation management functions, security subsystem and so on. The Zebra server runs the classes which implement operation logic and UI logic.

· Presentation is the active layer between the user (client) and the Zebra server. From the viewpoint of the Zebra server (and respectively, of the business and UI logic developer) all presentations look identically, and the access to presentation features is implemented via the same Presentation Java interface. This significantly simplifies the replacement of one presentation with another and, consequently, the restyling of the application appearance (since the UI presentation layer is described within the presentations). The current Zebra version provides JSP, XML and Swing presentations.

· Presentation connectors provide the ability of Zebra server and of the standard presentation to run on different machines, thus allowing to develop systems with a “thick” client based on various protocols. The existing version provides presentation connectors for SOAP and JMS protocols.

· Zebra client is completely controlled by the application running on the server. According to the presentation used, this can be either just the Internet Browser (for a JSP presentation) or a fully-functional application communicating with the server using a certain protocol (e.g., JMS for a JMS presentation).

5.2. Zebra application

Usually a Zebra application has the following structure:

[image: image17.wmf]UI classes:

zbasic’s and

zform’s

BL

implementation

BL

interface

BL classes:

zbasic’s

and others

BL interfaces

BL

UIL

UIP

P

R

E

S

E

N

T

A

T

I

O

N

zform bean’s

Presentation-

dependent UI

forms

Fig. 13. Zebra application.

where:

· BL implementation – the layer containing the classes implementing the operation logic. Usually these are the UML model classes with the “zbasic” stereotype (see in “Zebra language” section) along with other classes and interfaces probably used by the application, but not generated by Zebra generator (e.g., classes from existing third-part libraries).

· BL interface – the layer of interfaces providing access of the next layer to the operation logic. This layer can be omitted for the not-too-complex applications.

· UI Logic – the layer of user interface logic. Usually implemented by classes with “zbasic” and “zform” stereotypes. The objects with the “zform bean” stereotype are also the integral part of this layer. They act as mediators between the UI logic layer and the UI presentation layer, being the abstractions of data transferred between the visual components of user interface and the objects implementing the respective behavior.

· UI Presentation – this layer is implemented by presentation and presentation-specific objects (components of user interface). Thus, for a JSP presentation these will be the jsp pages, for a Swing presentation – components of the Swing library, and so on.

5.3. Zebra language

As it was already mentioned, the Zebra language is UML + Java. The UML language is used to describe the static structure of application classes (class diagrams) and the behavior of these classes (state diagrams for classes and the Java code of elementary class operations). The UML semantics is not changed, the standard technique of extension (stereotypes) is used. Consequently, Zebra can be used in conjunction with other tools for managing UML models which are compliant to the same standards.

The following class stereotypes are reserved:

· zbasic. The class which has a behavior but is not designed for immediately controlling some element of user interface. On a UML diagram it is a class which can be bound to a state diagram. The generator will produce the respective Java class with the behavior determined by the diagram.

· zform. The class which has a behavior and is designed for immediate control over some user interface element. On a UML diagram this is a class which can be bound to a state diagram, associated with a class of “zform bean” stereotype. The generator produces the respective Java class (with the behavior determined by the diagram and some predefined set of operations required to connect to the presentation).

· zform bean. This class has no behavior of its own. It is used only to transmit data and events between zform and the presentation and is (from the viewpoint of the UI logic layer developer) an abstraction of some UI presentation layer component.

5.4. Example of creating an application with Zebra

Here we provide an example of creating a primitive application using Zebra. The application will open a window (or display a page, depending upon the presentation used), with a “Hello world!” message. The behavior of the application can be described in more details as follows: the application should display a text window with the message “Hello World” inside. The window also should display an OK button. When you press this button, the window is closed and the application terminates.

First, a model defining the application structure is created. Since Rational Rose is currently the main tool of Zebra development, a blank Rational Rose document should be created and initialized (a more detailed description of creating and initializing a blank Zebra model can be found in the Zebra developer's guide).

A Zebra application itself is just a set of classes, the behavior of which is determined by respective state diagrams. In the blank model two classes linked by an association should be created:

[image: image18.png]<<zform bean=>>

HelloworldFormBean |, R

HelloWorld

gtet : Sting

&% ACTION_ ok : int = 11

SinitializeFormBean()

Fig. 14. Classes of the "Hello World" application.

One of these classes, HelloWorld (“zform” stereotype), is the primitive controller of a UI control element (in this case the latter is a window or a HTML page). The other class, HelloWorldFormBean (“zform bean” stereotype), specifies the abstract structure of this UI element.

The HelloWorldFormBean class has two attributes (fields):

1) A text attribute of the String type - specifies the text to be displayed in the window;

2) The ACTION_ok attribute of the int type - defines the button. The attributes starting with “ACTION_”, are conventionally used to specify that a user can call a discrete action within this control element - e.g., press a button.

The HelloWorldFormBean class defines the general appearance of the control element, while the controller class HelloWorld describes its behavior. The association between HelloWorldFormBean and HelloWorld specifies the relationship between these classes. The method initializeFormBean() used when creating HelloWorld and HelloWorldFormBean objects is determined for the HelloWorld class. This method is composed of a single code line: “getFb().setText("Hello World");”.

Now the window behavior should be defined. In order to do this, a state diagram is set up for the HelloWorld class:

[image: image19.png]it

entry/ nitializeF ormBean()
entry/ registeiForm Bean(:

WaltOkAction

<<sighal>>

FomEvent] evert getAction() == getfb(. ACTION_ok | / unregisterFomBean();

Temninate
entry/ System.exit(0),

Fig. 15. State diagram of the HelloWorld class

The diagram illustrates what will the lifecycle of the HelloWorld object be:

1) Transition from the initial state to the Init state is not labeled by any conditions and does not involve execution of any actions. The transition occurs immediately. Upon entering the Init state two actions are sequentially performed – the call of the initializeFormBean() method (initializes the contents of the text window), and the call of the registerFormBean() method to register the object of the HelloWorldFormBean class within the presentation (displays the window to the user). Finally, the window with the text "Hello World" and the OK button is created.

2) Transition to the WaitOkAction state. No actions are performed in this state, just waiting for the transition to the Terminate state.

3) The transition from WaitOkAction to Terminate is of the <signal> stereotype. This means that the transition will be started only upon receipt of a specific event, only if a certain condition is met, and only after executing a particular action. In this particular case the transition is activated if a FormEvent event is detected. Then, the condition check is performed - whether the detected form event is the ACTION_ok event of the HelloWorldFormBean class. If the condition is met, the unregisterFormBean() method is called - this results in closing the window.

4) In the Terminate state the System.exit(0) method is called. The JVM is immediately shut down and the application terminates.

6. Conclusions

The Zebra technology was successfully used in several software projects and demonstrated decent results. It is suggested to continue developing the technology in future in the following directions:

1) Automation of other stages of the development process (or integration with systems and/or technologies providing such automation).

Thus, it is possible to incorporate into the system under development a module facilitating business analysis (by semi-automatic processing of natural language texts describing the subject area and the customer's requirements for the system).

2) Introduction of new components simplifying development of applications of specific types (primarily Web applications).

It is suggested to point the technology mainly towards development of Web applications - this implies introducing new or optimizing existing runtime components, adding new stereotypes of classes aimed at implementation of Web applications.

The more distant prospects are:

3) Extending the prototyping abilities, allowing to generate prototypes using not only the detailed class diagrams, but also the less detailed use-case and interaction diagrams;

4) Support of languages other than Java.

PAGE
1

_1029528381.doc

Zebra server

FSM1

FSM2

Running BL statemachines

Running UIL statemachines

SM1

SM2

Presentation #1

Presentation interface

Client #1

Client #2

Client #3

Zebra server interface

Connector specific internal transport

External UML Tool (Rose)

Zebra generator

.java files

Java compiler

Java classes

Presentation #2

Direct references

Presentation specific transport

Zebra application #1

Zebra application #2

Presentation connector

_1075823287.doc

BL implementation

BL interface

BL classes: zbasic’s and others

BL interfaces

UI classes: zbasic’s and zform’s

BL

UIL

UIP

zform bean’s

P

R

E

S

E

N

T

A

T

I

O

N

Presentation-dependent UI forms

